In order to find the most likely failure scenarios which may occur under certain given operation domain, critical-scenario-based test is supposed as an effective and widely used method, which gives suggestions for designers to improve the developing algorithm. However, for the state of art, critical-scenario generation approaches commonly utilize random-search or reinforcement learning methods to generate series of scenarios for a specific algorithm, which takes amounts of computing resource for testing a developing target that is always changing, and inapplicable for testing a real-time system. In this paper, we proposed a real-time critical-scenario-generation (RTCSG) framework to address the above challenges. In our framework, an aggressive-driving algorithm is proposed in controlling the virtual agent vehicles, a specially designed cost function is presented to guide scenarios to evolve towards critical conditions, and a self-adaptive coefficient iteration is designed that enable the approach to operate successfully in different conditions. With our proposed method, the critical-scenarios can be directly generated for the target under test which is a black-box system, and the real-time critical-scenario test can be brought into reality. The simulation results show that our approach is able to obtain more critical scenarios in most conditions than current methods, with a higher stability of success. For a real-time testing, our approach improves the efficiency around 16 times.
翻译:为了找到某些特定操作领域可能发生的最可能的故障假设情景,关键假设测试被认为是一种有效和广泛使用的方法,为设计者提供改进发展中算法的建议。然而,对于现代,关键假设生成方法通常使用随机搜索或强化学习方法,为特定算法产生一系列假设情景,该算法需要大量计算资源来测试一个始终在变化且无法适用于实时系统测试的开发目标。在本文中,我们提议了一个实时关键假设生成框架来应对上述挑战。在我们的框架里,提出了一种在控制虚拟代理飞行器方面进行攻击性驱动的算法,提出了一种专门设计的成本功能来指导各种设想情景,以演变到关键条件,并设计了一种自我调整的系数循环,使该方法能够在不同条件下成功运行。用我们提出的方法,关键假设可以直接产生一个测试目标,即黑箱系统,以及实时关键假设生成的生成框架,以应对上述挑战。在我们的框架里,在控制虚拟代理飞行器方面,提出了一种侵略性驱动算法,提出了一种专门设计的成本函数,用以指导各种情景向关键条件演进,而自我调整后,可以使模拟结果在现实中更稳定地显示我们16个时代的成功测试方法。