This work presents a fast successive-cancellation list flip (Fast-SCLF) decoding algorithm for polar codes that addresses the high latency issue associated with the successive-cancellation list flip (SCLF) decoding algorithm. We first propose a bit-flipping strategy tailored to the state-of-the-art fast successive-cancellation list (FSCL) decoding that avoids tree-traversal in the binary tree representation of SCLF, thus reducing the latency of the decoding process. We then derive a parameterized path selection error model to accurately estimate the bit index at which the correct decoding path is eliminated from the initial FSCL decoding. The trainable parameter is optimized online based on an efficient supervised learning framework. Simulation results show that for a polar code of length 512 with 256 information bits, with similar error-correction performance and memory consumption, the proposed Fast-SCLF decoder reduces up to $73.4\%$ of the average decoding latency of the SCLF decoder with the same list size at the frame error rate of $10^{-4}$, while incurring a maximum computational complexity overhead of $27.6\%$. For the same polar code of length 512 with 256 information bits and at practical signal-to-noise ratios, the proposed decoder with list size 4 reduces $89.3\%$ and $43.7\%$ of the average complexity and decoding latency of the FSCL decoder with list size 32 (FSCL-32), respectively, while also reducing $83.2\%$ of the memory consumption of FSCL-32. The significant improvements of the proposed decoder come at the cost of $0.07$ dB error-correction performance degradation compared with FSCL-32.


翻译:这项工作为极地代码提供了一个快速的连续取消列表翻转( Fast- SCLF) 解码算法( Fast- SCLF), 该算法可以解决与连续取消列表翻转( SCLF) 解码算法相关的高潜值问题。 我们首先提出一个适合最先进的快速连续取消列表解码算法( FSCLF) 脱码策略( FSCL), 避免在 SSCLF 的双树代表制中进行树际交易, 从而降低解码过程的潜值。 然后我们得出一个参数化路径选择错误模型, 以准确估算在FSCLFCL 初始解码中消除正确解码路径的比特指数。 我们首先提议了一个比特的平滑度战略。 根据一个高效的监管学习框架, 512 256 信息比特的极值, 类似错误校正表现和记忆消耗量, 快速的解码将SSCLFFLF的平均解算值降为73.4美元( 美元) 美元 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
5+阅读 · 2015年7月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员