This paper firstly proposes a convex bilevel optimization paradigm to formulate and optimize popular learning and vision problems in real-world scenarios. Different from conventional approaches, which directly design their iteration schemes based on given problem formulation, we introduce a task-oriented energy as our latent constraint which integrates richer task information. By explicitly re-characterizing the feasibility, we establish an efficient and flexible algorithmic framework to tackle convex models with both shrunken solution space and powerful auxiliary (based on domain knowledge and data distribution of the task). In theory, we present the convergence analysis of our latent feasibility re-characterization based numerical strategy. We also analyze the stability of the theoretical convergence under computational error perturbation. Extensive numerical experiments are conducted to verify our theoretical findings and evaluate the practical performance of our method on different applications.
翻译:本文首先提出一个双级优化模式,以在现实世界情景中制定和优化大众学习和愿景问题。不同于常规方法,即直接设计基于特定问题表述的迭代计划,我们采用面向任务的能源作为我们的潜在制约因素,将更丰富的任务信息整合在一起。我们通过对可行性进行明确重新定性,建立了一个高效和灵活的算法框架,以快速解决方案空间和强力辅助工具(基于任务的域知识和数据分布)解决共解模式。理论上,我们提出我们潜在可行性的趋同分析,重新定性基于数字战略。我们还分析了计算错误扰动下的理论趋同的稳定性。我们进行了广泛的数字实验,以核实我们的理论发现并评估我们不同应用方法的实际表现。