The recently proposed L-lag coupling for unbiased MCMC (Biswas et al., 2019; Jacob et al., 2020) calls for a joint celebration by MCMC practitioners and theoreticians. For practitioners, it circumvents the thorny issue of deciding the burn-in period or when to terminate an MCMC sampling process, and opens the door for safe parallel implementation. For theoreticians, it provides a powerful tool to establish elegant and easily estimable bounds on the exact error of MCMC approximation at any finite number of iterates. A serendipitous observation about the bias correcting term leads us to introduce naturally available control variates into the L-lag coupling estimators. In turn, this extension enhances the coupled gains of L-lag coupling, because it results in more efficient unbiased estimators as well as a better bound on the total variation error of MCMC iterations, albeit the gains diminish with the numerical value of L. Specifically, the new bound is theoretically guaranteed to never exceed the one given previously. We also argue that L-lag coupling represents a long-sought-after coupling for the future, breaking a logjam of the coupling-from-the-past type of perfect sampling, by reducing the generally un-achievable requirement of being perfect to being unbiased, a worthwhile trade-off for ease of implementation in most practical situations. The theoretical analysis is supported by numerical experiments that show tighter bounds and a gain in efficiency when control variates are introduced.
翻译:最近提出的公正监控监委(Biswas et al., 2019;Jacob et al.,2020)的L-lag 结合,要求监监委执业者和理论学者共同庆祝。对于执业者来说,这回避了决定燃烧期或何时终止监监委取样过程的棘手问题,打开了安全平行执行的大门。对于理论学家来说,它提供了一个强大的工具,可以建立优雅和易于估量的界限,在任何数目有限的迭代点上建立监监委近似准确错误的精确界限。对错误纠正术语的偶然观察,导致我们对L-lag 混合估算员引入自然可用的控制变量。对于执业者来说,这种延长会增加拉拉拉加混合的结合收益,因为它导致更有效率的不偏重,而且更能约束着监控的全变差错误,尽管随着L.的数值下降,新约束在理论上保证永远不会超过先前给出的值。我们还争论说,在更接近性交易中,从最终的极值分析中逐渐地显示,一个不精确的极值,在从最终的汇率上将比更精确地显示更接近式的汇率式的汇率式的汇率上,这代表着着一个长期的精确的精确的汇率式的汇率的走向,意味着是逐渐的走向式的精确的走向。