Let $0<p,q\leq \infty$ and denote by $\mathcal S_p^N$ and $\mathcal S_q^N$ the corresponding Schatten classes of real $N\times N$ matrices. We study approximation quantities of natural identities $\mathcal S_p^N\hookrightarrow \mathcal S_q^N$ between Schatten classes and prove asymptotically sharp bounds up to constants only depending on $p$ and $q$, showing how approximation numbers are intimately related to the Gelfand numbers and their duals, the Kolmogorov numbers. In particular, we obtain new bounds for those sequences of $s$-numbers. Our results improve and complement bounds previously obtained by B. Carl and A. Defant [J. Approx. Theory, 88(2):228--256, 1997], Y. Gordon, H. K\"onig, and C. Sch\"utt [J. Approx. Theory, 49(3):219--239, 1987], A. Hinrichs and C. Michels [Rend. Circ. Mat. Palermo (2) Suppl., (76):395--411, 2005], and A. Hinrichs, J. Prochno, and J. Vyb\'iral [preprint, 2020]. We also treat the case of quasi-Schatten norms, which is relevant in applications such as low-rank matrix recovery.
翻译:在Schatten类之间,我们研究自然特性的近似数量 $<p,q\leq\ n美元,并且用美元和美元来表示。我们研究自然特性的近似数量 $mathcal S_p\ n\\ hookrightrow s\ mathcal S_q\ q\ n$ 在Schatten类之间,并证明仅取决于美元和美元,表明近似数字与Jelfand数量及其双倍应用,即Kolmogorov数量有密切的关系。我们特别为这些序列获得了美元数字的新界限。我们的结果改进和补充了B. Carl和A.Defant[J. Approx.Theory, 88(2):228-256, 1997],Y. Gordon, H. K\rechrich, and C. t t [J. A. A. A. A. A. A. A. A. A. A. A. A. A. A. C. C. C. C. C. C. C. C. C.