We present a randomized $O(m \log^2 n)$ work, $O(\text{polylog } n)$ depth parallel algorithm for minimum cut. This algorithm matches the work bounds of a recent sequential algorithm by Gawrychowski, Mozes, and Weimann [ICALP'20], and improves on the previously best parallel algorithm by Geissmann and Gianinazzi [SPAA'18], which performs $O(m \log^4 n)$ work in $O(\text{polylog } n)$ depth. Our algorithm makes use of three components that might be of independent interest. Firstly, we design a parallel data structure that efficiently supports batched mixed queries and updates on trees. It generalizes and improves the work bounds of a previous data structure of Geissmann and Gianinazzi and is work efficient with respect to the best sequential algorithm. Secondly, we design a parallel algorithm for approximate minimum cut that improves on previous results by Karger and Motwani. We use this algorithm to give a work-efficient procedure to produce a tree packing, as in Karger's sequential algorithm for minimum cuts. Lastly, we design an efficient parallel algorithm for solving the minimum $2$-respecting cut problem.
翻译:我们提出了一个随机的 $O( m \ log2 n) 工作, $O( text{polylog } n) 深度平行算法 。 这个算法与Gawrychowski、 Mozes 和 Weimann [CricP'20] 最近连续算法的工作界限相匹配, 并改进了Geissmann 和 Gianazzi [ SPA' 18] 先前的最佳平行算法, 该算法用$( m log4 n) 来进行 $O( text{polylog } n) 的深度工作。 我们的算法使用三个可能具有独立兴趣的组件 。 首先, 我们设计了一个平行的数据结构, 有效地支持了树木的分批混合查询和更新。 它概括并改进了 Geissmann 和 Gianinazzi ( SPA' 18 ) 先前的数据结构的工作界限, 并高效地处理了最佳的顺序算法。 其次, 我们设计了一种平行算法, 近似的最小的剪裁量法, Karger 和 Motwani 。 我们用这个算法 来给一个工作效率的 最低的折算法,,, 制造一个最低的顺序的 的 的 的 的 的, 并置的 。