Let $X$ be a random variable with unknown mean and finite variance. We present a new estimator of the mean of $X$ that is robust with respect to the possible presence of outliers in the sample, provides tight sub-Gaussian deviation guarantees without any additional assumptions on the shape or tails of the distribution, and moreover is asymptotically efficient. This is the first estimator that provably combines all these qualities in one package. Our construction is inspired by robustness properties possessed by the self-normalized sums. Theoretical findings are supplemented by numerical simulations highlighting strong performance of the proposed estimator in comparison with previously known techniques.
翻译:让 X$ 成为随机变量, 其平均值和数量差异不明。 我们提出了一个新估计值X美元, 其平均值在样本中可能存在外部线方面是稳健的, 提供严格的亚高加索偏差保证, 而不对分布的形状或尾部做任何额外的假设, 而且也具有微小的效率。 这是第一个可以将所有这些品质合并成一个包的估算值。 我们的构造是由自标数字所具备的稳健性能所启发的。 理论结论还辅之以数字模拟, 突出拟议的估计值与先前已知的技术相比的强效。