Sparse binary matrices are of great interest in the field of compressed sensing. This class of matrices make possible to perform signal recovery with lower storage costs and faster decoding algorithms. In particular, random matrices formed by i.i.d Bernoulli $p$ random variables are of practical relevance in the context of nonnegative sparse recovery. In this work, we investigate the robust nullspace property of sparse Bernoulli $p$ matrices. Previous results in the literature establish that such matrices can accurately recover $n$-dimensional $s$-sparse vectors with $m=O\left (\frac{s}{c(p)}\log\frac{en}{s}\right )$ measurements, where $c(p) \le p$ is a constant that only depends on the parameter $p$. These results suggest that, when $p$ vanishes, the sparse Bernoulli matrix requires considerably more measurements than the minimal necessary achieved by the standard isotropic subgaussian designs. We show that this is not true. Our main result characterizes, for a wide range of levels sparsity $s$, the smallest $p$ such that it is possible to perform sparse recovery with the minimal number of measurements. We also provide matching lower bounds to establish the optimality of our results.
翻译:偏差的二进制矩阵对压缩感测领域非常感兴趣。 这一类矩阵使得能够以较低的存储成本和更快的解码算法进行信号恢复。 特别是, i. i. d. Bernoulli $p 随机变量组成的随机矩阵在非负差量恢复的背景下具有实际相关性。 在这项工作中, 我们调查了稀薄的 Bernoulli $p 矩阵的牢固的空域属性。 文献中的以往结果证明, 这种矩阵可以精确地回收以美元=Oleft (\ frac{s{ {c( p) ⁇ log{ { en { { { { right) $ 测量法 。 其中, $ (p)\ le p$ 是仅取决于参数的常数 $p 。 这些结果表明, 当美元消失时, 稀薄的伯尼利矩阵要求的测量量大大超过标准的低度需要量值。 我们显示, 这并不真实。 我们的主要结果显示我们的主要结果显示, 与最差的回收量的值是最小的值, 我们的测量了最小值, 。