The problem of computing $\alpha$-capacity for $\alpha>1$ is equivalent to that of computing the correct decoding exponent. Various algorithms for computing them have been proposed, such as Arimoto and Jitsumatsu--Oohama algorithm. In this study, we propose a novel alternating optimization algorithm for computing the $\alpha$-capacity for $\alpha>1$ based on a variational characterization of the Augustin--Csisz{\'a}r mutual information. A comparison of the convergence performance of these algorithms is demonstrated through numerical examples.
翻译:暂无翻译