Structured sparsity is an important part of the modern statistical toolkit. We say a set of model parameters has block diagonal sparsity up to permutations if its elements can be viewed as the edges of a graph that has multiple connected components. For example, a block diagonal correlation matrix with K blocks of variables corresponds to a graph with K connected components whose nodes are the variables and whose edges are the correlations. This type of sparsity captures clusters of model parameters. To learn block diagonal sparsity patterns we develop the folded concave Laplacian spectral penalty and provide a majorization-minimization algorithm for the resulting non-convex problem. We show this algorithm has the appealing computational and statistical guarantee of converging to the oracle estimator after two steps with high probability, even in high-dimensional settings. The theory is then demonstrated in several classical problems including covariance estimation, linear regression, and logistic regression.
翻译:结构宽度是现代统计工具箱的一个重要部分。 我们说, 一组模型参数将二角宽度阻隔至变异, 如果其元素可以被视为具有多个连接组件的图形边缘。 例如, 与 K 变量块的区块二角相关矩阵与K 相匹配的K 相联组件的图形, 其节点是变量, 其边缘是关联的。 这种宽度捕捉模型参数组群。 要学习二角宽度宽度模式, 我们开发折叠的二次曲线光谱惩罚, 并为由此产生的非convex 问题提供主要化- 最小化算法。 我们展示了这种算法在高概率的两个步骤( 即使在高维环境 ) 后, 在计算和统计上保证与甲骨头估计相融合时具有吸引力。 理论随后在若干古典问题中得到了证明, 包括变量估计、 线性回归以及 逻辑回归。