The ability to generate synthetic sequences is crucial for a wide range of applications, and recent advances in deep learning architectures and generative frameworks have greatly facilitated this process. Particularly, unconditional one-shot generative models constitute an attractive line of research that focuses on capturing the internal information of a single image, video, etc. to generate samples with similar contents. Since many of those one-shot models are shifting toward efficient non-deep and non-adversarial approaches, we examine the versatility of a one-shot generative model for augmenting whole datasets. In this work, we focus on how similarity at the subsequence level affects similarity at the sequence level, and derive bounds on the optimal transport of real and generated sequences based on that of corresponding subsequences. We use a one-shot generative model to sample from the vicinity of individual sequences and generate subsequence-similar ones and demonstrate the improvement of this approach by applying it to the problem of Unmanned Aerial Vehicle (UAV) identification using limited radio-frequency (RF) signals. In the context of UAV identification, RF fingerprinting is an effective method for distinguishing legitimate devices from malicious ones, but heterogenous environments and channel impairments can impose data scarcity and affect the performance of classification models. By using subsequence similarity to augment sequences of RF data with a low ratio (5\%-20\%) of training dataset, we achieve significant improvements in performance metrics such as accuracy, precision, recall, and F1 score.
翻译:生成合成序列的能力对于广泛的应用至关重要,而且深层学习架构和基因框架最近的进展大大促进了这一进程。 特别是,无条件的单发基因模型是一个吸引的研究线,其重点是捕捉单一图像、视频等的内部信息,以生成内容相似的样本。由于其中许多单发模型正在转向高效的非深度和非对抗性方法,我们检查单发基因模型的多功能性,以扩大整个数据集。在这项工作中,我们侧重于后继序列层的相似性如何影响序列层的相似性,并根据相应的子序列1 得出关于真实和生成序列的最佳运输的界限。我们使用单发基因模型从单个序列附近的样本产生类似序列,产生类似序列的类似方法,通过将这一方法应用于使用有限的无线电频率(RAV)识别问题,在UAV-20序列层的精确度水平上如何影响相似的相似的序列。 在UAVS-20级级的精确度上,RFR 指纹采集的精确度和生成的精确度的精确性能,通过一种有效的数据分析方法,将这种精确性数据序列的精确性环境与精确性分析,可以将这种精确性分析作为分析的精度的精度的精度,通过一种分析,通过一种分析的精确度的精确度分析,从而将精确度的精度的精确度的精确性能的精确性能的分级的分级的精确性能分析,将数据分析,从而将数据分级的精确度用于分析,从而对等的精确性能对等的精确性能进行分级的精确性能进行分解。