In our work, we consider the problem of computing a vector $x \in Z^n$ of minimum $\|\cdot\|_p$-norm such that $a^\top x \not= a_0$, for any vector $(a,a_0)$ from a given subset of $Z^n$ of size $m$. In other words, we search for a vector of minimum norm that avoids a given finite set of hyperplanes, which is natural to call as the $\textit{Hyperplanes Avoiding Problem}$. This problem naturally appears as a subproblem in Barvinok-type algorithms for counting integer points in polyhedra. More precisely, it appears when one needs to evaluate certain rational generating functions in an avoidable critical point. We show that: 1) With respect to $\|\cdot\|_1$, the problem admits a feasible solution $x$ with $\|x\|_1 \leq (m+n)/2$, and show that such solution can be constructed by a deterministic polynomial-time algorithm with $O(n \cdot m)$ operations. Moreover, this inequality is the best possible. This is a significant improvement over the previous randomized algorithm, which computes $x$ with a guaranty $\|x\|_{1} \leq n \cdot m$. The original approach of A.~Barvinok can guarantee only $\|x\|_1 = O\bigl((n \cdot m)^n\bigr)$; 2) The problem is NP-hard with respect to any norm $\|\cdot\|_p$, for $p \in \bigl(R_{\geq 1} \cup \{\infty\}\bigr)$. 3) As an application, we show that the problem to count integer points in a polytope $P = \{x \in R^n \colon A x \leq b\}$, for given $A \in Z^{m \times n}$ and $b \in Q^m$, can be solved by an algorithm with $O\bigl(\nu^2 \cdot n^3 \cdot \Delta^3 \bigr)$ operations, where $\nu$ is the maximum size of a normal fan triangulation of $P$, and $\Delta$ is the maximum value of rank-order subdeterminants of $A$. It refines the previous state-of-the-art $O\bigl(\nu^2 \cdot n^4 \cdot \Delta^3\bigr)$-time algorithm.
翻译:暂无翻译