We consider physics-informed neural networks [Raissi et al., J. Comput. Phys. 278 (2019) 686-707] for forward physical problems. In order to find optimal PINNs configuration, we introduce a hyper-parameter tuning procedure via Gaussian processes-based Bayesian optimization. We apply the procedure to Helmholtz problems for bounded domains and conduct a thorough study, focusing on: (i) performance, (ii) the collocation points density $r$ and (iii) the frequency $\kappa$, confirming the applicability and necessity of the method. Numerical experiments are performed in two and three dimensions, including comparison to finite element methods.
翻译:我们考虑物理知情神经网络[Raissi 等人,J.Comput. Phys. 278 (2019) 686-707] 的远期物理问题。为了找到最佳的PINNs配置,我们通过高森进程基础的巴耶西亚优化引入超参数调控程序。我们将程序应用于受约束域的Helmholtz问题,并进行彻底研究,重点是:(一) 性能;(二) 合用点密度($) 和(三) 频率($\kappa),确认该方法的适用性和必要性。数字实验在两个和三个方面进行,包括与有限要素方法进行比较。