Command and control (C&C) is important in an attack. It transfers commands from the attacker to the malware in the compromised hosts. Currently, some attackers use online social networks (OSNs) in C&C tasks. There are two main problems in the C&C on OSNs. First, the process for the malware to find the attacker is reversible. If the malware sample is analyzed by the defender, the attacker would be exposed before publishing the commands. Second, the commands in plain or encrypted form are regarded as abnormal contents by OSNs, which would raise anomalies and trigger restrictions on the attacker. The defender can limit the attacker once it is exposed. In this work, we propose DeepC2, an AI-powered C&C on OSNs, to solve these problems. For the reversible hard-coding, the malware finds the attacker using a neural network model. The attacker's avatars are converted into a batch of feature vectors, and the defender cannot recover the avatars in advance using the model and the feature vectors. To solve the abnormal contents on OSNs, hash collision and text data augmentation are used to embed commands into normal contents. The experiment on Twitter shows that command-embedded tweets can be generated efficiently. The malware can find the attacker covertly on OSNs. Security analysis shows it is hard to recover the attacker's identifiers in advance.
翻译:命令与控制( C&C) 在攻击中很重要 。 它会将攻击者的命令从攻击者传递到受损主机的恶意软件 。 目前, 一些攻击者在 C&C 任务中使用在线社交网络( OSNs ) 。 在 OSNS 上, C&C 有两个主要问题 。 首先, 恶意软件查找攻击者找到攻击者的过程是可逆的。 如果保护者分析了恶意软件样本, 攻击者会在发布命令之前暴露。 其次, 普通或加密形式的命令被OSNs 视为异常内容, 这会对攻击者造成异常和触发限制。 捍卫者可以在攻击者暴露后限制攻击者 。 在此工作中, 我们提议在 OSN2 上使用 AI 的 C&C 来解决这些问题。 对于可逆的硬编码, 恶意软件会发现攻击者使用神经网络模型。 攻击者的affatars被转换成一组特性矢量, 并且捍卫者无法使用模型和特性矢量攻击者提前恢复攻击者 。 捍卫者可以在 OSNSNB 上使用正常内容 。 正在生成的服务器上生成的反变式指令 。 。 。 。 在 正在生成的服务器上, 正在生成的磁性指令中, 正在显示正常的磁带中, 。