We propose a method for using a large language model, such as GPT-3, to simulate responses of different humans in a given context. We test our method by attempting to reproduce well-established economic, psycholinguistic, and social experiments. The method requires prompt templates for each experiment. Simulations are run by varying the (hypothetical) subject details such as name and analyzing the text generated by the language model. We validate our methodology by using GPT-3, to show that it is possible to simulate responses of different people and that their responses are consistent with prior human studies from the literature. We find that the distributions generated by larger language models better align with prior experimental results, suggesting a trend that future language models may be used for even more faithful simulations of human responses. Our use of a language model for simulation is contrasted with anthropomorphic views of a language model as having its own behavior.
翻译:我们提出一种方法,用于使用大型语言模型,如GPT-3,以模拟不同人类在特定情况下的反应。我们通过尝试复制成熟的经济、精神语言和社会实验来测试我们的方法。这个方法需要每个实验的快速模板。模拟用不同(假的)主题细节运行,如名称和分析语言模型产生的文本。我们使用GPT-3来验证我们的方法,以表明模拟不同人群的反应是可能的,他们的反应与文献中人类先前的研究一致。我们发现,较大的语言模型产生的分布与先前的实验结果更加一致,表明未来语言模型可能被用于更忠实的模拟人类反应的趋势。我们模拟使用的语言模型与对语言模型的人类形态观点形成对比,认为它本身的行为。