We give an efficient deterministic algorithm that outputs an expanding generating set for any finite abelian group. The size of the generating set is close to the randomized construction of Alon and Roichman (1994), improving upon various deterministic constructions in both the dependence on the dimension and the spectral gap. By obtaining optimal dependence on the dimension we resolve a conjecture of Azar, Motwani, and Naor (1998) in the affirmative. Our technique is an extension of the bias amplification technique of Ta-Shma (2017), who used random walks on expanders to obtain expanding generating sets over the additive group of n-bit strings. As a consequence, we obtain (i) randomness-efficient constructions of almost k-wise independent variables, (ii) a faster deterministic algorithm for the Remote Point Problem, (iii) randomness-efficient low-degree tests, and (iv) randomness-efficient verification of matrix multiplication.


翻译:我们给出了一种高效的确定算法,为任何有限的亚伯里安群体输出一个扩大生产组。 生成组的规模接近于阿隆和罗希曼的随机结构(1994年),在依赖维度和光谱差距方面改进了各种确定性结构。 通过获得对维度的最佳依赖,我们解决了Azar、Motwani和Naor(1998年)的假设。我们的技术是Ta- Shma(2017年)的偏差放大技术的延伸,Ta- Shma(2017年)在扩张器上随机散步,以获得比n-bit 字符的添加组更多的产生组。结果,我们得到了(一) 近k-wise独立变量的随机高效构造,(二) 远程点问题的快速确定性算法,(三) 随机性高效低度测试,以及(四) 矩阵倍增的随机性核查。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Cayley图数据库的可视化(Visualize)
Python开发者
5+阅读 · 2019年9月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Cayley图数据库的可视化(Visualize)
Python开发者
5+阅读 · 2019年9月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员