To build a conversational agent that interacts fluently with humans, previous studies blend knowledge or personal profile into the pre-trained language model. However, the model that considers knowledge and persona at the same time is still limited, leading to hallucination and a passive way of using personas. We propose an effective dialogue agent that grounds external knowledge and persona simultaneously. The agent selects the proper knowledge and persona to use for generating the answers with our candidate scoring implemented with a poly-encoder. Then, our model generates the utterance with lesser hallucination and more engagingness utilizing retrieval augmented generation with knowledge-persona enhanced query. We conduct experiments on the persona-knowledge chat and achieve state-of-the-art performance in grounding and generation tasks on the automatic metrics. Moreover, we validate the answers from the models regarding hallucination and engagingness through human evaluation and qualitative results. We show our retriever's effectiveness in extracting relevant documents compared to the other previous retrievers, along with the comparison of multiple candidate scoring methods. Code is available at https://github.com/dlawjddn803/INFO
翻译:为了建立与人进行流畅互动的谈话媒介,先前的研究将知识或个人特征混入到经过培训的语言模式中。然而,同时考虑知识和个性的模式仍然有限,导致幻觉和被动地使用人的方式。我们建议一个有效的对话代理人,同时提供外部知识和人性。该代理人选择适当的知识和人性,以便用使用多编码执行的候选人评分来生成答案。然后,我们的模型利用通过知识-人强化查询的检索增强生成能力,产生较少的幻觉和更多的接触。我们在个人-知识聊天方面进行实验,并在自动计量的地基和生成任务方面实现最先进的性能。此外,我们还验证关于通过人类评估和定性结果进行幻觉和接触的模型的答案。我们展示了我们的检索者在提取相关文件方面与其他先前的检索者相比的有效性,以及多个候选人评分方法的比较。代码可在https://github.com/dlawdn803/INFO上查阅。