Two triples of triangles having pairwise disjoint outlines in 3-space are called combinatorially isotopic if one triple can be obtained from the other by a continuous motion during which the outlines of the triangles remain pairwise disjoint. We conjecture that it can be algorithmically checked if an (ordered or unordered) triple of triangles is combinatorially isotopic to a triple of triangles having pairwise disjoint convex hulls. We also conjecture that any unordered triple of pairwise disjoint triangles in 3-space belongs to one of the 5 types of such triples listed in the paper. We present an elementary proof that triples of different types are not combinatorially isotopic.
翻译:在 3 个空格中具有双向脱节轮廓的两三三角在 3 个空格中称为组合异位数。 如果通过连续运动从另一个空格中获取一个三重三角, 三角形的轮廓仍保持对对称脱节。 我们推测, 如果三角形的三重( 有序或无排序) 是组合异位数, 三角形的三角形将称为三重三角形。 我们还推测, 任何三重对称脱节三角形在 3 个空格中未排序的三重三角, 都属于纸上列出的五种三角形之一。 我们提出一个基本证据, 说明不同类型中的三重不具有组合异位数。