Fine-tuning has been demonstrated to be an effective method to improve the domain performance of large language models (LLMs). However, LLMs might fit the dataset bias and shortcuts for prediction, leading to poor generation performance. Experimental result shows that LLMs are prone to exhibit position bias, i.e., leveraging information positioned at the beginning or end, or specific positional cues within the input. Existing works on mitigating position bias require external bias knowledge or annotated non-biased samples, which is unpractical in reality. In this work, we propose a zero-shot position debiasing (ZOE) framework to mitigate position bias for LLMs. ZOE leverages unsupervised responses from pre-trained LLMs for debiasing, thus without any external knowledge or datasets. To improve the quality of unsupervised responses, we propose a master-slave alignment (MSA) module to prune these responses. Experiments on eight datasets and five tasks show that ZOE consistently outperforms existing methods in mitigating four types of position biases. Besides, ZOE achieves this by sacrificing only a small performance on biased samples, which is simple and effective.
翻译:暂无翻译