We characterize optimal rank-1 matrix approximations with Hankel or Toeplitz structure with regard to two different norms, the Frobenius norm and the spectral norm, in a new way. More precisely, we show that these rank-1 matrix approximation problems can be solved by maximizing special rational functions. Our approach enables us to show that the optimal solutions with respect to these two norms have completely different structure and only coincide in the trivial case when the singular value decomposition already provides an optimal rank-1 approximation with the desired Hankel or Toeplitz structure. We also prove that the Cadzow algorithm for structured low-rank approximations always converges to a fixed point in the rank-1 case. However, it usually does not converge to the optimal solution, neither with regard to the Frobenius norm nor the spectral norm.


翻译:更准确地说,我们证明,这些一等矩阵近似问题可以通过最大限度增加特殊理性功能来解决。我们的方法使我们能够表明,关于这两种规范的最佳解决办法的结构完全不同,只有在单值分解已经提供了理想的汉克尔或托普利茨结构的最佳一等近似值时,才会在次要的情况下出现。我们还证明,结构低级近似的卡佐算法总是会与一等的固定点趋同。然而,它通常不会与最佳解决办法趋同,无论是弗罗贝尼乌斯规范还是光谱规范。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Spectral solutions of PDEs on networks
Arxiv
0+阅读 · 2021年4月30日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员