In this paper, we study the propagation speeds of reaction-diffusion-advection (RDA) fronts in time-periodic cellular and chaotic flows with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We first apply the variational principle to reduce the computation of KPP front speeds to a principal eigenvalue problem of a linear advection-diffusion operator with space-time periodic coefficients on a periodic domain. To this end, we develop efficient Lagrangian particle methods to compute the principal eigenvalue through the Feynman-Kac formula. By estimating the convergence rate of Feynman-Kac semigroups and the operator splitting methods for approximating the linear advection-diffusion solution operators, we obtain convergence analysis for the proposed numerical methods. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing KPP front speeds in time-periodic cellular and chaotic flows, especially the time-dependent Arnold-Beltrami-Childress (ABC) flow and time-dependent Kolmogorov flow in three-dimensional space.


翻译:在本文中,我们研究与Kolmogorov-Petrovsky-Piskunov(KPP)无线性联系的时段细胞和混乱流的反扩散战线的传播速度。我们首先应用变式原则,将KPP前速的计算降低到一个具有定期域空间周期系数的线性反扩散操作员的主要电子价值问题。为此,我们开发了高效的Lagrangian粒子方法,通过Feynman-Kac公式计算主要电子价值。通过估计Feynman-Kac半组的趋同率和对线性对流溶解操作员的分解方法,我们获得了对拟议数字方法的趋同分析。最后,我们提出了数字结果,以证明在时段蜂窝和混乱流中计算KPP的前速度的拟议方法的准确性和效率,特别是基于时间的Arnold-Beltrami-Chilest(ABC)流和基于时空的Kolmoprov流。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于Numpy实现神经网络:反向传播
论智
5+阅读 · 2018年3月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月5日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于Numpy实现神经网络:反向传播
论智
5+阅读 · 2018年3月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员