Accurate uncertainty estimates are essential for deploying deep object detectors in safety-critical systems. The development and evaluation of probabilistic object detectors have been hindered by shortcomings in existing performance measures, which tend to involve arbitrary thresholds or limit the detector's choice of distributions. In this work, we propose to view object detection as a set prediction task where detectors predict the distribution over the set of objects. Using the negative log-likelihood for random finite sets, we present a proper scoring rule for evaluating and training probabilistic object detectors. The proposed method can be applied to existing probabilistic detectors, is free from thresholds, and enables fair comparison between architectures. Three different types of detectors are evaluated on the COCO dataset. Our results indicate that the training of existing detectors is optimized toward non-probabilistic metrics. We hope to encourage the development of new object detectors that can accurately estimate their own uncertainty. Code available at https://github.com/georghess/pmb-nll.
翻译:精确的不确定性估计对于在安全临界系统中部署深物体探测器至关重要; 概率物体探测器的开发和评估受到现有性能措施缺陷的阻碍,现有性能措施往往涉及任意阈值或限制探测器对分布分布的选择; 在这项工作中,我们提议将物体探测视为一个设定的预测任务,其中探测器可以预测成套物体的分布情况; 使用对随机有限数据集的负日志相似性, 我们提出了一个适当的评分规则,用于评价和培训概率物体探测器。 拟议的方法可以适用于现有的概率探测器,不设阈值,能够公平比较各种结构。 在COCO数据集上对三种不同类型的探测器进行了评估。 我们的结果表明,现有探测器的培训是优化的,以适应非概率性测量。 我们希望鼓励开发能够准确估计自身不确定性的新物体探测器。 可在 https://github.com/georghes/pmb-nll 上查阅代码。