Knowledge graph embedding involves learning representations of entities -- the vertices of the graph -- and relations -- the edges of the graph -- such that the resulting representations encode the known factual information represented by the knowledge graph are internally consistent and can be used in the inference of new relations. We show that knowledge graph embedding is naturally expressed in the topological and categorical language of \textit{cellular sheaves}: learning a knowledge graph embedding corresponds to learning a \textit{knowledge sheaf} over the graph, subject to certain constraints. In addition to providing a generalized framework for reasoning about knowledge graph embedding models, this sheaf-theoretic perspective admits the expression of a broad class of prior constraints on embeddings and offers novel inferential capabilities. We leverage the recently developed spectral theory of sheaf Laplacians to understand the local and global consistency of embeddings and develop new methods for reasoning over composite relations through harmonic extension with respect to the sheaf Laplacian. We then implement these ideas to highlight the benefits of the extensions inspired by this new perspective.
翻译:知识图嵌入包含实体的学习表现 -- -- 图表的顶端 -- -- 和关系 -- -- 图表的边缘 -- -- 因此,将知识图所代表的已知事实信息编码为已知事实信息的表述在内部是一致的,可以用于推断新的关系。我们显示知识图嵌入自然以\ textit{cellulal Sheaves}的表层和直截面语言表达:学习知识图嵌入相当于在图表上学习\ textit{colle sheaf},但受某些限制。除了为知识图嵌入模型的推理提供一个普遍框架外,这种沙夫理论视角还承认了先前对嵌入的广泛限制,并提供了新的推断能力。我们利用最近开发的沙夫拉比拉比亚人的光谱理论来理解嵌入的本地和全球一致性,并开发新的方法,通过与沙夫拉普拉比亚人的口相扩展来解释复合关系的推理。我们随后实施这些想法,以突出这一新视角所激发的扩展的好处。