On general regular simplicial partitions $\mathcal{T}$ of bounded polytopal domains $\Omega \subset \mathbb{R}^d$, $d\in\{2,3\}$, we construct \emph{exact neural network (NN) emulations} of all lowest order finite element spaces in the discrete de Rham complex. These include the spaces of piecewise constant functions, continuous piecewise linear (CPwL) functions, the classical ``Raviart-Thomas element'', and the ``N\'{e}d\'{e}lec edge element''. For all but the CPwL case, our network architectures employ both ReLU (rectified linear unit) and BiSU (binary step unit) activations to capture discontinuities. In the important case of CPwL functions, we prove that it suffices to work with pure ReLU nets. Our construction and DNN architecture generalizes previous results in that no geometric restrictions on the regular simplicial partitions $\mathcal{T}$ of $\Omega$ are required for DNN emulation. In addition, for CPwL functions our DNN construction is valid in any dimension $d\geq 2$. Our ``FE-Nets'' are required in the variationally correct, structure-preserving approximation of boundary value problems of electromagnetism in nonconvex polyhedra $\Omega \subset \mathbb{R}^3$. They are thus an essential ingredient in the application of e.g., the methodology of ``physics-informed NNs'' or ``deep Ritz methods'' to electromagnetic field simulation via deep learning techniques. We indicate generalizations of our constructions to higher-order compatible spaces and other, non-compatible classes of discretizations, in particular the ``Crouzeix-Raviart'' elements and Hybridized, Higher Order (HHO) methods.
翻译:在普通的常规简易分区 $\ mathcal{T} 平坦的多端域 $\ Omega\ subset\ mathb{R ⁇ {R ⁇ {R ⁇ d$} 美元, $d\ in\\\\\ 2, 3 ⁇ $, 我们在离散的 Rham 复合体中, 我们建造了所有最低顺序的内线性元素空间 。 在重要的 CPwL 函数中, 我们证明它足够用纯 ReLU 网络工作( CPwL) 。 经典的“ Raviart- limams 等离子元素 ”, 以及“ R\\\\ comcreax licional_ literrial_ literiacal 3 等值。 除了CPlcase, 我们的网络结构结构结构结构结构在正常的内, 我们的内, 需要使用 RL 和 BISL 的内, 的内, 等的内, 等内, 等内, 等内, 。