项目名称: 图的距离(无符号)拉普拉斯谱

项目编号: No.11461071

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 王国平

作者单位: 新疆师范大学

项目金额: 40万元

中文摘要: 本项目拟采用代数、组合及图论的方法,利用矩阵论、图谱理论与代数图论的相关结果,研究图的距离拉普拉斯谱和距离无符号拉普拉斯谱。主要研究以下五个方面的内容:①确定树、单圈图及双圈图的距离拉普拉斯谱半径取得极值时的极图;②刻画二部图、给定连通度、无悬挂点等结构特殊的图的距离(无符号)拉普拉斯谱半径达到极值时的极图;③对图的距离(无符号)拉普拉斯谱半径的上下界展开研究,尤其是建立它与图的结构参数,如直径、色数等的关系;④对某个特征值限于一定范围内的图类进行研究;⑤对各种由图运算得到的图,如积图的距离(无符号)拉普拉斯图谱展开研究。以期完成图的距离(无符号)拉普拉斯谱特征的刻画和距离(无符号)拉普拉斯谱图特征的刻画。 图的距离拉普拉斯谱在应用数学、物理及化学等方面都具有很大的使用价值,图谱理论也需要完善该领域的研究结果。目前,图的距离拉普拉斯谱的研究还未真正展开,本项目必将推动该领域的研究工作

中文关键词: 距离拉普拉斯谱;距离无符号拉普拉斯谱;距离谱半径;上下界;极图

英文摘要: We will use algebraic,combinatorial and graph theory and apply results attained in matrix,spectrum of graph and algebraic graph theory to study distance laplacian and distance signless laplacian. Mainly they contain the following five aspects:①Determine the graphs with minimum distance Laplacian spectral radius among the trees, unicyclic graphs and bicylic graphs, respectively;②Characterize the graphs with minimum distance (signless) laplacian spectral radius among graphs whose structures are special such as bipartite graphs,graphs with fixed connectivity and graphs without pendant vertex;③Study the upper and lower bound of distance (signless) laplacian spectral radius of graphs to attain their expression with such the structural parameters as diameter,number of color etc;④Study the graphs whose some eigenvalue of distance (signless) laplacian matrix is limited;⑤Study distance (signless) laplacian spectra of the graphs obtained by operation such as the product graphs etc. Our research objectives are to obtain distance (signless) laplacian spectral characterization of graphs and characterize the graphs with the extremal distance (signless) laplacian spectral radius. The distance (signless) laplacian of graphs have important applied value in such research field as applied mathematics,physics and chemistry. On the other hand, it is also essential to perfect the spectral theory of graphs. Up to now research of distance (signless) laplacian of graphs have not been entirety spread, and so this program will promote the researches in the field.

英文关键词: Distance laplacian spectrum;Distance signless laplacian spectrum;Distance spectral radius;Upper and lower bound;Extremal graph

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
专知会员服务
34+阅读 · 2021年10月17日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
79+阅读 · 2021年7月28日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
21+阅读 · 2021年6月28日
【经典书】信息论原理,774页pdf
专知会员服务
255+阅读 · 2021年3月22日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
专知会员服务
87+阅读 · 2020年8月2日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
知识图谱嵌入(KGE):方法和应用的综述
AI科技评论
122+阅读 · 2019年8月26日
单位圆与三角函数
遇见数学
14+阅读 · 2019年1月22日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
14+阅读 · 2020年1月27日
小贴士
相关主题
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
15+阅读 · 2021年12月7日
专知会员服务
34+阅读 · 2021年10月17日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
79+阅读 · 2021年7月28日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
21+阅读 · 2021年6月28日
【经典书】信息论原理,774页pdf
专知会员服务
255+阅读 · 2021年3月22日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
专知会员服务
87+阅读 · 2020年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员