Cross-study replicability is a powerful model evaluation criterion that emphasizes generalizability of predictions. When training cross-study replicable prediction models, it is critical to decide between merging and treating the studies separately. We study boosting algorithms in the presence of potential heterogeneity in predictor-outcome relationships across studies and compare two multi-study learning strategies: 1) merging all the studies and training a single model, and 2) multi-study ensembling, which involves training a separate model on each study and ensembling the resulting predictions. In the regression setting, we provide theoretical guidelines based on an analytical transition point to determine whether it is more beneficial to merge or to ensemble for boosting with linear learners. In addition, we characterize a bias-variance decomposition of estimation error for boosting with component-wise linear learners. We verify the theoretical transition point result in simulation and illustrate how it can guide the decision on merging vs. ensembling in an application to breast cancer gene expression data.
翻译:跨研究的可复制性是强调预测的通用性的一个强有力的模型评价标准。当培训跨研究可复制的预测模型时,关键是要在合并和分别处理研究之间作出决定。我们在各种研究中研究在预测结果关系中可能存在异质的情况下提高算法,比较两个多研究学习战略:(1) 合并所有研究和培训单一模型,(2) 多研究组合,这涉及对每项研究进行单独模型的培训,并综合由此产生的预测。在回归环境中,我们根据一个分析过渡点提供理论指南,以确定合并是否更有利于合并,或有助于与线性学习者一起推动。此外,我们确定与部分智慧的线性学习者一起推动的估算错误的偏差变性。我们核查模拟的理论转变点结果,并说明它如何指导关于合并和合并的决定。结合乳腺癌基因表达数据的应用。