This work addresses the problem of robot manipulation tasks under unknown dynamics, such as pick-and-place tasks under payload uncertainty, where active exploration and(/for) online parameter adaptation during task execution are essential to enable accurate model-based control. The problem is framed as dual control seeking a closed-loop optimal control problem that accounts for parameter uncertainty. We simplify the dual control problem by pre-defining the structure of the feedback policy to include an explicit adaptation mechanism. Then we propose two methods for reference trajectory generation. The first directly embeds parameter uncertainty in robust optimal control methods that minimize the expected task cost. The second method considers minimizing the so-called optimality loss, which measures the sensitivity of parameter-relevant information with respect to task performance. We observe that both approaches reason over the Fisher information as a natural side effect of their formulations, simultaneously pursuing optimal task execution. We demonstrate the effectiveness of our approaches for a pick-and-place manipulation task. We show that designing the reference trajectories whilst taking into account the control enables faster and more accurate task performance and system identification while ensuring stable and efficient control.
翻译:本研究针对机器人操作任务在未知动力学条件下的问题,例如载荷不确定性下的拾放任务,其中任务执行过程中的主动探索和在线参数自适应对于实现精确的基于模型的控制至关重要。该问题被构建为双重控制问题,旨在寻求一个考虑参数不确定性的闭环最优控制问题。我们通过预定义反馈策略的结构以包含显式自适应机制来简化双重控制问题。随后,我们提出了两种参考轨迹生成方法。第一种方法直接将参数不确定性嵌入到鲁棒最优控制方法中,以最小化期望任务成本。第二种方法考虑最小化所谓的最优性损失,该损失衡量了参数相关信息相对于任务性能的敏感性。我们观察到,这两种方法在其公式推导中自然地考虑了费舍尔信息,同时追求最优任务执行。我们在拾放操作任务中验证了所提方法的有效性。结果表明,在参考轨迹设计时考虑控制因素,能够在确保稳定高效控制的同时,实现更快、更准确的任务执行和系统辨识。