Knowledge graphs are inherently incomplete. Therefore substantial research has been directed towards knowledge graph completion (KGC), i.e., predicting missing triples from the information represented in the knowledge graph (KG). Embedding models have yielded promising results for KGC, yet any current KGC embedding model is incapable of: (1) fully capturing vital inference patterns (e.g., composition), (2) capturing prominent logical rules jointly (e.g., hierarchy and composition), and (3) providing an intuitive interpretation of captured patterns. In this work, we propose ExpressivE, a fully expressive spatio-functional embedding model that solves all these challenges simultaneously. ExpressivE embeds pairs of entities as points and relations as hyper-parallelograms in the virtual triple space $\mathbb{R}^{2d}$. This model design allows ExpressivE not only to capture a rich set of inference patterns jointly but additionally to display any supported inference pattern through the spatial relation of hyper-parallelograms, offering an intuitive and consistent geometric interpretation of ExpressivE embeddings and their captured patterns. Experimental results on standard KGC benchmarks reveal that ExpressivE is competitive with state-of-the-art models and even significantly outperforms them on WN18RR.


翻译:因此,大量研究的方向是知识图的完成(KGC),即预测知识图(KG)所显示的信息中缺失的三重功能。嵌入模型已经为KGC产生了有希望的结果,但任何当前的KGC嵌入模型都无法:(1) 充分捕捉关键的推理模式(例如构成),(2) 共同捕捉突出的逻辑规则(例如等级和构成),(3) 对所捕捉的模式提供直观的解释。在这项工作中,我们提议ExpressivE, 这是一种能同时解决所有这些挑战的完全直观的spatio功能嵌入模型。 ExpressivE 嵌入式组合作为实体的点和关系,作为虚拟三重空间超分光线图的点和关系 $\mathbb{R ⁇ 2d}。 这个模型设计不仅允许ExpressivE 联合捕捉到一套丰富的推导模式(例如等级和构成),而且还能够通过超分光图像的空间关系展示任何支持的推论模式。 ExpressE 嵌式模型的直观和精确度解释,提供直观和连贯和一致的几度解释,甚至精确的对Express-Arde-Arde-Arde-Arde-Arde-Ardustrismismislational-s-stal-stal-stal-stal-stal-stal-stal-s-s-stal-staldaldal-stal-stal-stalmentalmental-stal-stal-s-st-st-sal-sal-sal-stal-sal-smdal-smal-s-stal-smdal-s-smdal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-smdal-s-sal-sal-sal-sal-sal-smabal-smadal-smadal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员