A few models have tried to tackle the link prediction problem, also known as knowledge graph completion, by embedding knowledge graphs in comparably lower dimensions. However, the state-of-the-art results are attained at the cost of considerably increasing the dimensionality of embeddings which causes scalability issues in the case of huge knowledge bases. Transformers have been successfully used recently as powerful encoders for knowledge graphs, but available models still have scalability issues. To address this limitation, we introduce a Transformer-based model to gain expressive low-dimensional embeddings. We utilize a large number of self-attention heads as the key to applying query-dependent projections to capture mutual information between entities and relations. Empirical results on WN18RR and FB15k-237 as standard link prediction benchmarks demonstrate that our model has favorably comparable performance with the current state-of-the-art models. Notably, we yield our promising results with a significant reduction of 66.9% in the dimensionality of embeddings compared to the five best recent state-of-the-art competitors on average.


翻译:少数模型试图通过将知识图表以相对较低的维度嵌入知识图解,解决连结预测问题,也称为知识图的完成。然而,以大幅提高嵌入的维度为代价,实现了最先进的结果,在巨大的知识库中,造成可缩缩化问题的嵌入层的维度大大增加了。最近,变异器成功地被用作知识图的强大编码器,但现有模型仍有可缩放问题。为解决这一局限性,我们引入了一个基于变异器的模型,以获得显微的低维度嵌入。我们利用大量自知力头作为关键,应用基于查询的预测来捕捉实体和关系之间的相互信息。WN18RRR和FB15k-237作为标准链接预测基准的经验性结果表明,我们的模型的性能与当前最新模型的可资比较。值得注意的是,我们取得有希望的结果是,与目前最先进的5个最先进的竞争者平均相比,嵌入的维度大幅下降66.9 %。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
20+阅读 · 2019年9月7日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员