Quantifying changes in the probability and magnitude of extreme flooding events is key to mitigating their impacts. While hydrodynamic data are inherently spatially dependent, traditional spatial models such as Gaussian processes are poorly suited for modeling extreme events. Spatial extreme value models with more realistic tail dependence characteristics are under active development. They are theoretically justified, but give intractable likelihoods, making computation challenging for small datasets and prohibitive for continental-scale studies. We propose a process mixture model which specifies spatial dependence in extreme values as a convex combination of a Gaussian process and a max-stable process, yielding desirable tail dependence properties but intractable likelihoods. To address this, we employ a unique computational strategy where a feed-forward neural network is embedded in a density regression model to approximate the conditional distribution at one spatial location given a set of neighbors. We then use this univariate density function to approximate the joint likelihood for all locations by way of a Vecchia approximation. The process mixture model is used to analyze changes in annual maximum streamflow within the US over the last 50 years, and is able to detect areas which show increases in extreme streamflow over time.
翻译:测量极端洪水事件概率和规模的变化是减轻其影响的关键。 虽然流体动力学数据在空间上具有内在依赖性,但传统的空间模型,如高森过程等传统空间模型不适合模拟极端事件。 空间极端价值模型具有更现实的尾部依赖性特征, 正在积极开发中。 这些模型在理论上是有道理的, 但给计算小数据集带来困难, 并且令大陆规模的研究望而却步。 我们提议了一个过程混合模型, 将极端值的空间依赖性作为高山进程和最大可变过程的组合, 产生可取的尾部依赖性特性, 但可能性难以控制。 为了解决这个问题, 我们采用了独特的计算策略, 在密度回归模型中嵌入一个饲料向前的神经网络, 以近似于一个空间位置的有条件分布。 我们随后使用这个单向密度函数, 来估计所有地点的共同可能性, 以 Vecchia 近似值的方式。 该过程混合物模型用来分析美国过去50年来每年最大流流量的变化, 并且能够探测显示极端流流增加的地区。