Quantifying changes in the probability and magnitude of extreme flooding events is key to mitigating their impacts. While hydrodynamic data are inherently spatially dependent, traditional spatial models such as Gaussian processes are poorly suited for modeling extreme events. Spatial extreme value models with more realistic tail dependence characteristics are under active development. They are theoretically justified, but give intractable likelihoods, making computation challenging for small datasets and prohibitive for continental-scale studies. We propose a process mixture model which specifies spatial dependence in extreme values as a convex combination of a Gaussian process and a max-stable process, yielding desirable tail dependence properties but intractable likelihoods. To address this, we employ a unique computational strategy where a feed-forward neural network is embedded in a density regression model to approximate the conditional distribution at one spatial location given a set of neighbors. We then use this univariate density function to approximate the joint likelihood for all locations by way of a Vecchia approximation. The process mixture model is used to analyze changes in annual maximum streamflow within the US over the last 50 years, and is able to detect areas which show increases in extreme streamflow over time.


翻译:测量极端洪水事件概率和规模的变化是减轻其影响的关键。 虽然流体动力学数据在空间上具有内在依赖性,但传统的空间模型,如高森过程等传统空间模型不适合模拟极端事件。 空间极端价值模型具有更现实的尾部依赖性特征, 正在积极开发中。 这些模型在理论上是有道理的, 但给计算小数据集带来困难, 并且令大陆规模的研究望而却步。 我们提议了一个过程混合模型, 将极端值的空间依赖性作为高山进程和最大可变过程的组合, 产生可取的尾部依赖性特性, 但可能性难以控制。 为了解决这个问题, 我们采用了独特的计算策略, 在密度回归模型中嵌入一个饲料向前的神经网络, 以近似于一个空间位置的有条件分布。 我们随后使用这个单向密度函数, 来估计所有地点的共同可能性, 以 Vecchia 近似值的方式。 该过程混合物模型用来分析美国过去50年来每年最大流流量的变化, 并且能够探测显示极端流流增加的地区。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
10+阅读 · 2021年2月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员