The spectrum of mutations in a collection of cancer genomes can be described by a mixture of a few mutational signatures. The mutational signatures can be found using non-negative matrix factorization (NMF). To extract the mutational signatures we have to assume a distribution for the observed mutational counts and a number of mutational signatures. In most applications, the mutational counts are assumed to be Poisson distributed, and the rank is chosen by comparing the fit of several models with the same underlying distribution and different values for the rank using classical model selection procedures. However, the counts are often overdispersed, and thus the Negative Binomial distribution is more appropriate. We propose a Negative Binomial NMF with a patient specific dispersion parameter to capture the variation across patients. We also introduce a novel model selection procedure inspired by cross-validation to determine the number of signatures. Using simulations, we study the influence of the distributional assumption on our method together with other classical model selection procedures and we show that our model selection procedure is more robust at determining the correct number of signatures under model misspecification. We also show that our model selection procedure is more accurate than state-of-the-art methods for finding the true number of signatures. Other methods are highly overestimating the number of signatures when overdispersion is present. We apply our proposed analysis on a wide range of simulated data and on two real data sets from breast and prostate cancer patients. The code for our model selection procedure and negative binomial NMF is available in the R package SigMoS and can be found at https://github.com/MartaPelizzola/SigMoS.
翻译:癌症基因组集中的突变频谱可以通过几种突变特征的混合组合来描述。 突变特征可以通过非负矩阵因子化( NMF) 找到。 要提取突变特征, 我们必须假设观察到突变计数的分布和若干突变特征。 在大多数应用中, 突变计数被假定为 Poisson 分布, 通过使用经典模式选择程序, 将几种模型的适合性与相同的基本分布和等级值进行比较, 来选择等级。 然而, 计数往往过于分散, 因此, 阴性蛋白质矩阵分布更为合适 。 为了获取病人的变异性, 我们建议使用一个带有病人特定分散参数的负Binomial NMF 。 我们还引入了一种由交叉校验所启发的新模式选择程序, 确定签名数量。 我们用模拟模型/ 模型选择程序可以更精确地确定模型的签名数量, 在模型模型选择S 中, 我们的模型选择程序比目前的数据序列范围要精确得多。 我们的模型选择方法比 。 在模型选择 S 中, 正在找到的 Rial- preal prest IP IP 程序比 。