The fast adoption of Massive MIMO for high-throughput communications was enabled by many research contributions mostly relying on infinite-blocklength information-theoretic bounds. This makes it hard to assess the suitability of Massive MIMO for ultra-reliable low-latency communications (URLLC) operating with short blocklength codes. This paper provides a rigorous framework for the characterization and numerical evaluation (using the saddlepoint approximation) of the error probability achievable in the uplink and downlink of Massive MIMO at finite blocklength. The framework encompasses imperfect channel state information, pilot contamination, spatially correlated channels, and arbitrary linear spatial processing. In line with previous results based on infinite-blocklength bounds, we prove that, with minimum mean-square error (MMSE) processing and spatially correlated channels, the error probability at finite blocklength goes to zero as the number $M$ of antennas grows to infinity, even under pilot contamination. On the other hand, numerical results for a practical URLLC network setup involving a base station with $M=100$ antennas, show that a target error probability of $10^{-5}$ can be achieved with MMSE processing, uniformly over each cell, only if orthogonal pilot sequences are assigned to all the users in the network. Maximum ratio processing does not suffice.


翻译:快速采用大规模MIMO用于高通量通信的大规模MIMO是许多研究贡献促成的,这些研究贡献主要依靠无限区段信息理论界限。这使得很难评估大规模MIMO组织是否适合使用短区段代码运行的超可靠低线通信(URLLC)。本文为定性和数字评估(使用马鞍点近似值)在大规模MIMO的上行和下行可达到的有限区段长度误差概率提供了一个严格的框架。框架包括不完善的频道状态信息、试点污染、空间相关频道和任意直线空间处理。根据以往基于无限区段界限的评估结果,我们证明,由于最小平均差(MMS)处理和空间相关通道,随着天线数量增长到无限(即使是在试点污染之下),有限区段长度的误差概率为零。另一方面,由拥有$M=100美元天线的基础站组成的实用的URLC网络的数字结果显示,目标误差概率为10-5美元,如果每个磁盘处理速度不超过每个MMS 或最大机序,则只能实现每个MMS-S-enal oral oral oration 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
84+阅读 · 2020年12月5日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月22日
VIP会员
相关VIP内容
专知会员服务
84+阅读 · 2020年12月5日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员