We present Spectral Inference Networks, a framework for learning eigenfunctions of linear operators by stochastic optimization. Spectral Inference Networks generalize Slow Feature Analysis to generic symmetric operators, and are closely related to Variational Monte Carlo methods from computational physics. As such, they can be a powerful tool for unsupervised representation learning from video or graph-structured data. We cast training Spectral Inference Networks as a bilevel optimization problem, which allows for online learning of multiple eigenfunctions. We show results of training Spectral Inference Networks on problems in quantum mechanics and feature learning for videos on synthetic datasets. Our results demonstrate that Spectral Inference Networks accurately recover eigenfunctions of linear operators and can discover interpretable representations from video in a fully unsupervised manner.
翻译:我们提出光谱推断网络,这是通过随机优化来学习线性操作员天文功能的框架。光谱推断网络向一般对称操作员概括地介绍慢特征分析,并与计算物理学中的变化式蒙特卡洛方法密切相关。因此,它们可以成为从视频或图层结构数据中学习不受监督的表示法的有力工具。我们把培训光谱推断网络作为一个双级优化问题,允许在线学习多种天文功能。我们展示了对光谱推断网络进行量子力问题培训的结果,以及合成数据集视频特征学习的结果。我们的结果显示,光谱干涉网络准确地恢复了线性操作员的机能,并且能够以完全不受监督的方式从视频中发现可解释的表示法。