Detecting maliciously falsified facial images and videos has attracted extensive attention from digital-forensics and computer-vision communities. An important topic in manipulation detection is the localization of the fake regions. Previous work related to forgery detection mostly focuses on the entire faces. However, recent forgery methods have developed to edit important facial components while maintaining others unchanged. This drives us to not only focus on the forgery detection but also fine-grained falsified region segmentation. In this paper, we propose a collaborative feature learning approach to simultaneously detect manipulation and segment the falsified components. With the collaborative manner, detection and segmentation can boost each other efficiently. To enable our study of forgery detection and segmentation, we build a facial forgery dataset consisting of both entire and partial face forgeries with their pixel-level manipulation ground-truth. Experiment results have justified the mutual promotion between forgery detection and manipulated region segmentation. The overall performance of the proposed approach is better than the state-of-the-art detection or segmentation approaches. The visualization results have shown that our proposed model always captures the artifacts on facial regions, which is more reasonable.


翻译:从数字取证和计算机视觉社区,检测恶意篡改的人脸图像和视频引起了广泛关注。篡改检测中一个重要的主题是伪造区域的定位。以前与伪造检测相关的工作主要集中在整个面部。然而,最近的伪造方法已经发展到编辑重要的面部组件,同时保持其他部分不变。这促使我们不仅关注于伪造检测,而且是细粒度篡改区域的分割。在本文中,我们提出了一种协作特征学习方法,可以同时检测篡改和分割伪造部分。通过协作方式,检测和分割可以有效地互相促进。为了使我们研究伪造检测和分割,我们构建了一个包含整个和部分面部伪造及其像素级篡改标签的数据集。实验结果证明了伪造检测和篡改区域分割之间的相互促进。所提出的方法的整体性能优于最先进的检测或分割方法。可视化结果表明,我们提出的模型总是捕捉到面部区域上的痕迹,更加合理。

0
下载
关闭预览

相关内容

八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
29+阅读 · 2020年1月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
八篇 ICCV 2019 【图神经网络(GNN)+CV】相关论文
专知会员服务
29+阅读 · 2020年1月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员