Recent advancements in masked image modeling (MIM) have made it a prevailing framework for self-supervised visual representation learning. The MIM pretrained models, like most deep neural network methods, are still vulnerable to adversarial attacks, limiting their practical application, and this issue has received little research attention. In this paper, we investigate how this powerful self-supervised learning paradigm can provide adversarial robustness to downstream classifiers. During the exploration, we find that noisy image modeling (NIM), a simple variant of MIM that adopts denoising as the pre-text task, reconstructs noisy images surprisingly well despite severe corruption. Motivated by this observation, we propose an adversarial defense method by exploiting the pretrained decoder for denoising, referred to as De^3, through which NIM is able to enhance adversarial robustness beyond providing pretrained features. Furthermore, we incorporate a simple modification, sampling the noise scale hyperparameter from random distributions, and enable the defense to achieve a better and tunable trade-off between accuracy and robustness. Experimental results demonstrate that, in terms of adversarial robustness, NIM is superior compared to MIM thanks to its effective denoising capability. Moreover, the defense provided by NIM achieves performance on par with adversarial training while offering the extra tunability advantage. Source code and models will be made available.
翻译:暂无翻译