The free energy plays a fundamental role in descriptions of many systems in continuum physics. Notably, in multiphysics applications, it encodes thermodynamic coupling between different fields. It thereby gives rise to driving forces on the dynamics of interaction between the constituent phenomena. In mechano-chemically interacting materials systems, even consideration of only compositions, order parameters and strains can render the free energy to be reasonably high-dimensional. In proposing the free energy as a paradigm for scale bridging, we have previously exploited neural networks for their representation of such high-dimensional functions. Specifically, we have developed an integrable deep neural network (IDNN) that can be trained to free energy derivative data obtained from atomic scale models and statistical mechanics, then analytically integrated to recover a free energy density function. The motivation comes from the statistical mechanics formalism, in which certain free energy derivatives are accessible for control of the system, rather than the free energy itself. Our current work combines the IDNN with an active learning workflow to improve sampling of the free energy derivative data in a high-dimensional input space. Treated as input-output maps, machine learning accommodates role reversals between independent and dependent quantities as the mathematical descriptions change with scale bridging. As a prototypical system we focus on Ni-Al. Phase field simulations using the resulting IDNN representation for the free energy density of Ni-Al demonstrate that the appropriate physics of the material have been learned. To the best of our knowledge, this represents the most complete treatment of scale bridging, using the free energy for a practical materials system, that starts with electronic structure calculations and proceeds through statistical mechanics to continuum physics.
翻译:自由能源在描述连续物理学中的许多系统方面起着根本作用。 值得注意的是, 在多物理学应用中, 它将不同领域之间的热力联动编码, 从而在组成现象之间的相互作用动态中产生驱动力。 在机械化学互动材料系统中, 甚至只考虑组成、 秩序参数和压力, 使自由能源具有合理的高维度。 在提出自由能源作为规模连接的范式时, 我们以前利用神经网络来代表这种高维功能。 具体地说, 我们开发了一个无法渗透的深神经网络( IDNN), 可以用来对从原子规模模型和统计机械学中获取的能源衍生数据进行免费的训练, 然后通过分析整合来恢复一个自由的能源密度功能。 动力来自统计结构的形式主义, 其中某些自由能源衍生物可以用来控制系统, 而不是免费的能源本身。 我们目前的工作将IDNN与一个积极的学习流程结合起来, 用来改进在高维度输入空间中对自由能源衍生数据的取样。 被看成是输入输出式的深度地图, 机器学习可以将统计衍生数据转换成自由的计算结果 。 。 将这个模型的模型可以用来在数据库中进行独立的物理结构上进行 。 。