The lack of large-scale real raw image denoising dataset gives rise to challenges on synthesizing realistic raw image noise for training denoising models. However, the real raw image noise is contributed by many noise sources and varies greatly among different sensors. Existing methods are unable to model all noise sources accurately, and building a noise model for each sensor is also laborious. In this paper, we introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise. It inherently generates accurate raw image noise for different camera sensors. Two efficient and generic techniques: pattern-aligned patch sampling and high-bit reconstruction help accurate synthesis of spatial-correlated noise and high-bit noise respectively. We conduct systematic experiments on SIDD and ELD datasets. The results show that (1) our method outperforms existing methods and demonstrates wide generalization on different sensors and lighting conditions. (2) Recent conclusions derived from DNN-based noise modeling methods are actually based on inaccurate noise parameters. The DNN-based methods still cannot outperform physics-based statistical methods.
翻译:缺乏大规模真实的原始图像拆离数据集,在综合现实的原始图像噪音以培训拆离模型方面产生了挑战。然而,真正的原始图像噪音是由许多噪音源促成的,在不同传感器之间差异很大。现有方法无法精确地模拟所有噪音源,为每个传感器建立噪音模型也很困难。在本文中,我们从传感器真实噪音的直接取样中引入了合成噪音的新视角。它必然为不同的照相传感器生成准确的原始图像噪音。两种高效和通用技术:符合模式的补丁取样和高位重建,有助于与空间-孔噪音和高位噪音的精确合成。我们分别对SIDD和ELD数据集进行系统实验。结果显示:(1)我们的方法超越了现有方法和不同传感器和照明条件的广泛概括化。(2)基于DNNN的噪音模型方法最近得出的结论实际上基于不准确的噪音参数。基于DNNN的方法仍然不能超越基于物理的统计方法。