We consider the problem of secure packet routing at the maximum achievable rate in Quantum Key Distribution (QKD) networks. Assume that a QKD protocol generates symmetric private key pairs for secure communication over each link in a network. The quantum key generation process is modeled using a stochastic counting process. Packets are first encrypted with the quantum keys available for each hop and then transmitted on a point-to-point basis over the links. A fundamental problem in this setting is the design of a secure and capacity-achieving routing policy that takes into account the time-varying availability of the encryption keys and finite link capacities. In this paper, we propose a new secure throughput-optimal policy called Tandem Queue Decomposition (TQD). The TQD policy is derived by combining the QKD process with the Universal Max Weight routing policy, proposed earlier by Sinha and Modiano. We show that the TQD policy solves the problem of secure and efficient packet routing for a broad class of traffic, including unicast, broadcast, multicast, and anycast. The proposed decomposition reduces the problem to the generalized network flow problem without the key availability constraints over a transformed network. The proof of the throughput-optimality of the TQD policy uses the Lyapunov stability theory for analyzing the interdependent packet queueing process and the key-storage dynamics. Finally, we demonstrate the competitiveness of the TQD policy over the existing algorithms by numerically comparing them on a simulator that we build on top of the state-of-the-art OMNeT++ network simulator platform.
翻译:我们考虑在Qauntum Key Smission (QKD) 网络中以最大可实现速率设定安全包路程的问题。 假设QKD 协议产生对称的私人密钥配对, 用于网络中每个链接的安全通信。 量子密钥生成程序使用随机查点计算程序进行模型化。 包首先使用每个跳下可用的量子密钥加密, 然后在链接的点对点基础上传输。 这个环境的一个基本问题是设计一个安全且能力达标路程政策, 同时考虑到加密密钥和有限连接能力的可用时间变化。 在此文件中, 我们提出一个新的安全量子密钥密配密配密配密配密配密配密配密配密配。 QQD 政策由QKD 与通用 Max Weight 路由辛哈 和 Modiano 早先提出的环绕行政策相结合, 我们展示了安全且高效的国密配比问题 QQD 。 QD 政策通过一个不透算、 虚拟网络的顶端规则化、 将数据流流流流压化、 最终测试, 将数据转换到我们的网络的系统升级的服务器, 。