Despite the remarkable performance and generalization levels of deep learning models in a wide range of artificial intelligence tasks, it has been demonstrated that these models can be easily fooled by the addition of imperceptible yet malicious perturbations to natural inputs. These altered inputs are known in the literature as adversarial examples. In this paper, we propose a novel probabilistic framework to generalize and extend adversarial attacks in order to produce a desired probability distribution for the classes when we apply the attack method to a large number of inputs. This novel attack paradigm provides the adversary with greater control over the target model, thereby exposing, in a wide range of scenarios, threats against deep learning models that cannot be conducted by the conventional paradigms. We introduce four different strategies to efficiently generate such attacks, and illustrate our approach by extending multiple adversarial attack algorithms. We also experimentally validate our approach for the spoken command classification task and the Tweet emotion classification task, two exemplary machine learning problems in the audio and text domain, respectively. Our results demonstrate that we can closely approximate any probability distribution for the classes while maintaining a high fooling rate and even prevent the attacks from being detected by label-shift detection methods.


翻译:尽管在广泛的人工智能任务中,深层次的深层次学习模式表现和普遍程度相当,但事实证明,这些模式很容易被自然投入中添加的不可察觉但恶意干扰的威胁所蒙骗。文献中将这些改变的投入称为对抗性实例。在本文中,我们提出了一个新颖的概率框架,以概括和扩展对抗性攻击,从而在对大量投入应用攻击方法时,为各个类别产生理想的概率分布。这个新颖的攻击模式为对手提供了对目标模式的更大控制,从而在广泛的情景中暴露了对无法由传统模式实施的深层次学习模式的威胁。我们引入了四种不同的战略,以有效产生这种攻击,并通过扩大多重对抗性攻击算法来说明我们的做法。我们还实验性地验证了我们对于口头指令分类任务和Tweet情绪分类任务的方法,即分别对音频和文字领域的两个示范性机器学习问题。我们的结果表明,我们可以在保持高愚昧率甚至防止通过标签定位探测方法探测攻击的概率分布。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员