The immense success of ML systems relies heavily on large-scale, high-quality data. The high demand for data has led to many paradigms that involve selling, exchanging, and sharing data, motivating the study of economic processes with data as an asset. However, data differs from classical economic assets in terms of free duplication: there is no concept of limited supply since it can be replicated at zero marginal cost. This distinction introduces fundamental differences between economic processes involving data and those concerning other assets. We study a parallel to exchange (Arrow-Debreu) markets where data is the asset. Here, agents with datasets exchange data fairly and voluntarily, aiming for mutual benefit without monetary compensation. This framework is particularly relevant for non-profit organizations that seek to improve their ML models through data exchange, yet are restricted from selling their data for profit. We propose a general framework for data exchange, built on two core principles: (i) fairness, ensuring that each agent receives utility proportional to their contribution to others; contributions are quantifiable using standard credit-sharing functions like the Shapley value, and (ii) stability, ensuring that no coalition of agents can identify an exchange among themselves which they unanimously prefer to the current exchange. We show that fair and stable exchanges exist for all monotone continuous utility functions. Next, we investigate the computational complexity of finding approximate fair and stable exchanges. We present a local search algorithm for instances with monotone submodular utility functions, where each agent contributions are measured using the Shapley value. We prove that this problem lies in CLS under mild assumptions. Our framework opens up several intriguing theoretical directions for research in data economics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2023年7月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员