Data valuation, a critical aspect of data-centric ML research, aims to quantify the usefulness of individual data sources in training machine learning (ML) models. However, data valuation faces significant yet frequently overlooked privacy challenges despite its importance. This paper studies these challenges with a focus on KNN-Shapley, one of the most practical data valuation methods nowadays. We first emphasize the inherent privacy risks of KNN-Shapley, and demonstrate the significant technical difficulties in adapting KNN-Shapley to accommodate differential privacy (DP). To overcome these challenges, we introduce TKNN-Shapley, a refined variant of KNN-Shapley that is privacy-friendly, allowing for straightforward modifications to incorporate DP guarantee (DP-TKNN-Shapley). We show that DP-TKNN-Shapley has several advantages and offers a superior privacy-utility tradeoff compared to naively privatized KNN-Shapley in discerning data quality. Moreover, even non-private TKNN-Shapley achieves comparable performance as KNN-Shapley. Overall, our findings suggest that TKNN-Shapley is a promising alternative to KNN-Shapley, particularly for real-world applications involving sensitive data.
翻译:暂无翻译