This article provides, through theoretical analysis, an in-depth understanding of the classification performance of the empirical risk minimization framework, in both ridge-regularized and unregularized cases, when high dimensional data are considered. Focusing on the fundamental problem of separating a two-class Gaussian mixture, the proposed analysis allows for a precise prediction of the classification error for a set of numerous data vectors $\mathbf{x} \in \mathbb R^p$ of sufficiently large dimension $p$. This precise error depends on the loss function, the number of training samples, and the statistics of the mixture data model. It is shown to hold beyond Gaussian distribution under some additional non-sparsity condition of the data statistics. Building upon this quantitative error analysis, we identify the simple square loss as the optimal choice for high dimensional classification in both ridge-regularized and unregularized cases, regardless of the number of training samples.


翻译:本文通过理论分析,深入了解在考虑高维数据时,在山脊正规化和非正规化情况下,实验风险最小化框架的分类性能,以高斯混合物分为两个等级这一根本问题为重点,建议的分析可以精确预测一组数量足够大维的众多数据矢量的分类错误$\mathbf{x}\in\mathbb R ⁇ p$ p$。这一精确的错误取决于损失功能、培训样品的数量以及混合物数据模型的统计。它显示,在高斯分布之外,数据统计还存在一些额外的非分类性条件。根据这种定量错误分析,我们确定简单的平方损失是高维分类的最佳选择,无论培训样品的数量如何。

0
下载
关闭预览

相关内容

经验风险是对训练集中的所有样本点损失函数的平均最小化。经验风险越小说明模型f(X)对训练集的拟合程度越好。
专知会员服务
51+阅读 · 2020年12月14日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月7日
Arxiv
0+阅读 · 2021年1月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年5月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员