In this article, we investigate Maximum Likelihood Estimation with tools from Tropical Geometry and Bernstein--Sato theory. We investigate the critical points of very affine varieties and study their asymptotic behavior. We relate these asymptotics to particular rays in the tropical variety as well as to Bernstein--Sato ideals and give a connection to Maximum Likelihood Estimation in Statistics.


翻译:在文章中,我们用热带几何学和伯恩斯泰因-佐藤理论的工具来调查最大可能性估计。我们用热带几何学和伯恩斯泰因-佐藤理论的工具来调查非常亲近的品种的临界点并研究它们的无药可治行为。我们将这些无药可治的物种与热带种类的特定射线以及伯恩斯坦-佐藤理想联系起来,并联系到统计中的最大可能性估计值。

0
下载
关闭预览

相关内容

在统计学中,最大似然估计(maximum likelihood estimation, MLE)是通过最大化似然函数估计概率分布参数的一种方法,使观测数据在假设的统计模型下最有可能。参数空间中使似然函数最大化的点称为最大似然估计。最大似然逻辑既直观又灵活,因此该方法已成为统计推断的主要手段。
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Top
微信扫码咨询专知VIP会员