Deep neural networks have been shown to be very powerful methods for many supervised learning tasks. However, they can also easily overfit to training set biases, i.e., label noise and class imbalance. While both learning with noisy labels and class-imbalanced learning have received tremendous attention, existing works mainly focus on one of these two training set biases. To fill the gap, we propose \textit{Prototypical Classifier}, which does not require fitting additional parameters given the embedding network. Unlike conventional classifiers that are biased towards head classes, Prototypical Classifier produces balanced and comparable predictions for all classes even though the training set is class-imbalanced. By leveraging this appealing property, we can easily detect noisy labels by thresholding the confidence scores predicted by Prototypical Classifier, where the threshold is dynamically adjusted through the iteration. A sample reweghting strategy is then applied to mitigate the influence of noisy labels. We test our method on CIFAR-10-LT, CIFAR-100-LT and Webvision datasets, observing that Prototypical Classifier obtains substaintial improvements compared with state of the arts.


翻译:深神经网络被证明是许多受监督的学习任务非常强大的方法。 但是,它们也可以很容易地取代培训中设置的偏差,即标签噪音和阶级不平衡。虽然使用吵闹标签和课堂平衡学习受到极大关注,但现有的工程主要侧重于这两个培训偏差中的一个。为了填补这一空白,我们提议了“textit{Protodical分类仪 ”,它不需要由于嵌入网络而需要适当的额外参数。不同于偏向于头类的传统分类师,Protocical分类仪为各个班提供了平衡和可比的预测,即使培训组是班级平衡的。通过利用这一吸引人的特性,我们可以很容易地发现噪声标签,通过临界质谱分类仪预测的可信度分数,通过迭代法对门槛值进行动态调整。然后采用抽样重编战略来减轻噪音标签的影响。我们在CIRA-10-LT、CIFAR-100-LT和Webvision数据集上测试了我们的方法,我们观察到Prototogradication分类员获得与艺术状态相比的子级改进。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
6+阅读 · 2019年11月14日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员