This paper reviews two main types of prediction interval methods under a parametric framework. First, we describe methods based on an (approximate) pivotal quantity. Examples include the plug-in, pivotal, and calibration methods. Then we describe methods based on a predictive distribution (sometimes derived based on the likelihood). Examples include Bayesian, fiducial, and direct-bootstrap methods. Several examples involving continuous distributions along with simulation studies to evaluate coverage probability properties are provided. We provide specific connections among different prediction interval methods for the (log-)location-scale family of distributions. This paper also discusses general prediction interval methods for discrete data, using the binomial and Poisson distributions as examples. We also overview methods for dependent data, with application to time series, spatial data, and Markov random fields, for example.
翻译:本文审视了参数框架下的两种主要预测间隔方法。 首先,我们描述基于(近似)关键数量的方法,例如插件、枢纽和校准方法。然后我们描述基于预测分布的方法(有时根据可能性得出),例如巴耶斯法、摄像法和直接启动陷阱法。提供了几个例子,涉及连续分布以及用于评价覆盖概率特性的模拟研究。我们提供了不同预测间隔方法之间的具体连接,用于(log-lob-lob-size-cloves)分布式分布式分布式分布式分布式分布式分布式分布式。本文还讨论离散数据的一般预测间隔方法,例如使用二元和 Poisson分布式分布式分布式分布式。我们还概述了依赖数据的方法,包括时间序列、空间数据和Markov随机字段等。