Representations of measures of concordance in terms of Pearson' s correlation coefficient are studied. All transforms of random variables are characterized such that the correlation coefficient of the transformed random variables is a measure of concordance. Next, Gini' s gamma is generalized and it is shown that the resulting generalized Gini' s gamma can be represented as a mixture of measures of concordance that are Pearson' s correlation coefficients of transformed random variables. As an application of this correlation mixture representation of generalized Gini' s gamma, lower and upper bounds of the compatible set of generalized Gini' s gamma, which is the collection of all possible square matrices whose entries are pairwise bivariate generalized Gini' s gammas, are derived.
翻译:研究了皮尔逊相关系数的一致度量的表示,随机变量的所有变异都具有特征,因此变异随机变量的关联系数是一种一致性的度量。接下来,基尼的伽马射线是普遍化的,并表明由此产生的普遍基尼的伽马射线可以作为比尔逊变随机变量相关系数的一致度量的混合体来表示。作为一种应用,这一相关混合物的通用基尼的伽马射线、可兼容的通用基尼的伽马射线的下界和上界,即收集所有可能的平方矩阵,其条目是相对的双变通用基尼的伽马射线。