Multi-task language models show outstanding performance for various natural language understanding tasks with only a single model. However, these language models inevitably utilize unnecessary large-scale model parameters, even when they are used for only a specific task. In this paper, we propose a novel training-free task-specific pruning method for multi-task language models. Specifically, we utilize an attribution method to compute the importance of each neuron for performing a specific task. Then, we prune task-specifically unimportant neurons using this computed importance. Experimental results on the six widely-used datasets show that our proposed pruning method significantly outperforms baseline compression methods. Also, we extend our method to be applicable in a low-resource setting, where the number of labeled datasets is insufficient.
翻译:多任务语言模型显示了各种自然语言理解任务的杰出表现,只有一个模型。然而,这些语言模型不可避免地使用不必要的大型模型参数,即使这些参数仅用于特定任务。在本文件中,我们建议为多任务语言模型采用一种新的不培训的任务性裁剪方法。具体地说,我们使用一种归因方法来计算每个神经元对执行具体任务的重要性。然后,我们利用这个计算的重要性,利用这个计算出任务性不重要的神经元。六个广泛使用的数据集的实验结果显示,我们提议的裁剪方法大大超过基线压缩方法。此外,我们扩大我们的方法,以适用于一个低资源环境,因为标签数据集的数量不足。