We study a regularized interacting particle method for computing aggregation patterns and near singular solutions of a Keller-Segal (KS) chemotaxis system in two and three space dimensions, then further develop DeepParticle (DP) method to learn and generate solutions under variations of physical parameters. The KS solutions are approximated as empirical measures of particles which self-adapt to the high gradient part of solutions. We utilize the expressiveness of deep neural networks (DNNs) to represent the transform of samples from a given initial (source) distribution to a target distribution at finite time T prior to blowup without assuming invertibility of the transforms. In the training stage, we update the network weights by minimizing a discrete 2-Wasserstein distance between the input and target empirical measures. To reduce computational cost, we develop an iterative divide-and-conquer algorithm to find the optimal transition matrix in the Wasserstein distance. We present numerical results of DP framework for successful learning and generation of KS dynamics in the presence of laminar and chaotic flows. The physical parameter in this work is either the small diffusivity of chemo-attractant or the reciprocal of the flow amplitude in the advection-dominated regime.
翻译:我们研究一种常规互动粒子方法,用于计算集成模式和Keller-Segal(KS)化疗系统在两个和三个空间维度上的近乎单一的解决方案,然后进一步开发DeepPartle (DP) 方法,在物理参数的变化下学习和产生解决方案。KS解决方案被近似于对高梯度部分解决方案进行自我适应的粒子实验性测量。我们利用深神经网络(DNNS)的表达性来代表样本从特定初始(源)分布转变为在一定时间T进行爆炸前的目标分布,而不必假设变异性。在培训阶段,我们通过最大限度地减少输入和目标实验措施之间的离散距离2-Wasserstein(DP)来更新网络重量。为了降低计算成本,我们开发了一种迭接式的分化算法,以便在瓦瑟斯坦距离找到最佳的过渡矩阵。我们展示了DP框架的数字结果,以便成功学习和生成KS的动态,而不必假定变异流。在培训阶段,我们更新了网络的物理参数,要么是化学系统常态的反流。