Analogy is core to human cognition. It allows us to solve problems based on prior experience, it governs the way we conceptualize new information, and it even influences our visual perception. The importance of analogy to humans has made it an active area of research in the broader field of artificial intelligence, resulting in data-efficient models that learn and reason in human-like ways. While cognitive perspectives of analogy and deep learning have generally been studied independently of one another, the integration of the two lines of research is a promising step towards more robust and efficient learning techniques. As part of a growing body of research on such an integration, we introduce the Analogical Matching Network: a neural architecture that learns to produce analogies between structured, symbolic representations that are largely consistent with the principles of Structure-Mapping Theory.
翻译:模拟是人类认知的核心。 它让我们能够根据以往的经验解决问题。 它指导我们如何构思新信息,甚至影响我们的视觉感知。 类比对于人类的重要性使它在更广阔的人工智能领域成为一个积极的研究领域,导致数据效率高的模型以类似人类的方式学习和理性。 虽然对类比和深层次学习的认知观点通常进行了独立研究,但将两条研究线结合起来是朝着更强大和高效学习技术的方向迈出的有希望的一步。 作为关于这种整合的日益扩大的研究机构的一部分,我们引入了“神经匹配网络 ” : 神经结构,学会在结构化、象征性的表述之间产生类比,这大体上符合结构构建理论的原则。