Approximate computing frameworks configure applications so they can operate at a range of points in an accuracy-performance trade-off space. Prior work has introduced many frameworks to create approximate programs. As approximation frameworks proliferate, it is natural to ask how they can be compared and combined to create even larger, richer trade-off spaces. We address these questions by presenting VIPER and BOA. VIPER compares trade-off spaces induced by different approximation frameworks by visualizing performance improvements across the full range of possible accuracies. BOA is a family of exploration techniques that quickly locate Pareto-efficient points in the immense trade-off space produced by the combination of two or more approximation frameworks. We use VIPER and BOA to compare and combine three different approximation frameworks from across the system stack, including: one that changes numerical precision, one that skips loop iterations, and one that manipulates existing application parameters. Compared to simply looking at Pareto-optimal curves, we find VIPER's visualizations provide a quicker and more convenient way to determine the best approximation technique for any accuracy loss. Compared to a state-of-the-art evolutionary algorithm, we find that BOA explores 14x fewer configurations yet locates 35% more Pareto-efficient points.


翻译:近似计算框架配置了应用程序。 先前的工作已经引入了许多创建近似程序的框架。 随着近似框架扩散, 自然会询问如何比较和合并这些框架, 以创造更大型、 更富的交换空间。 我们通过展示 VIPER 和 BAA 来解决这些问题。 VIPER 比较了不同近似框架所引发的交换空间, 其方法是在各种可能的天体范围内直观地观性能改进。 BOA 是一组探索技术, 快速定位两个或两个以上近似框架组合产生的巨大交换空间中Pareto效率点。 我们使用 VIPER 和 BOA 来比较和合并三个不同的近似框架, 包括: 一个改变数字精确度, 一个跳过循环转转动的转动, 以及一个操纵现有应用参数。 与简单地查看 Pareto-optimal 曲线相比, 我们发现 VIPER 的可视化提供了更快捷、更方便的方法来确定任何精确损失的最佳近似技术。 比较一下, 我们找到了一个州- 更低位的35 演算法。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Benchmarking Simulation-Based Inference
Arxiv
0+阅读 · 2021年4月9日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员